Training content
This course will guide you through the techniques and methods used to visualize data using Matplotlib and Seaborn Python libraries. To boost your data visualization skills, you will also learn how to master the Bokeh Python library.
In the first course, we introduce the MatPlotLib and Seaborn libraries and the methods available. In the second course, we will explore the main functionalities of Matplotlib: we will look at how to customize Matplotlib objects, how to use various plotting techniques, and finally, we will focus on how to communicate results.
You will then put your skills into practice in a real-world scenario in which you use Python to build and explore a dataset of financial returns using data related to the closing price of three stocks quoted in the NASDAQ 100 index.
The Interactive Data Visualization with Python using Bokeh course gives you the necessary skills to build dynamic plots. You will then put those skills into practice by translating data related to the famous videogame FIFA into a graphical dimension.
If you have any feedback related to this course, feel free to contact us at support@cloudacademy.com.
Learning Objectives
- Learn the fundamentals of Python's Matplotlib, Seaborn, and Bokeh libraries
- Understand the different plot types available
- Customize objects
- Create multiple plots
- Customize plots (annotations, labels, linestyles, colors, etc)
Intended Audience
- Data scientists
- Anyone looking to create plots and visualize data using Python
Prerequisites
To get the most out of this course, you should already be familiar with using Python, for which you can take our Introduction to Python course. Knowledge of Python's Pandas library would also be beneficial and you might want to take our Working with Pandas and Data Wrangling with Pandas courses before embarking on this course.
Resources
The data used in this course can be found in this GitHub repository.
About the Author
Andrea is a Data Scientist at Cloud Academy. He is passionate about statistical modeling and machine learning algorithms, especially for solving business tasks.
He holds a PhD in Statistics, and he has published in several peer-reviewed academic journals. He is also the author of the book Applied Machine Learning with Python.