Loading Data into Power BI
In this Lesson, we’ll review the Power BI Desktop interface. Then, we’ll show you how to load data into Power BI Desktop and how to save your file. We will also explain data profiling and look at the various data profiling options in Power Query like column quality, column value distribution and column profiling, and the benefits of using these.
Lastly, we will look at how to resolve cell-level errors, empties, and inconsistencies in Power Query. This section will cover how to replace errors, replace values, remove rows, and how to identify the root cause of the error using Power Query. The demos in this Lesson will provide you with practical examples that will help you to troubleshoot when encountering issues while loading data into Power BI.
Learning Objectives
- Understand how to load data into Power BI and how to optimise functionality and size by using data profiling
- Understand how to resolve errors, empties, and data inconsistencies in Power Query
Intended Audience
- Anyone who would like to learn about importing data into Power BI
- Anyone who needs to resolve cell-level errors or empties in a Power BI model or who would like to understand data profiling to improve the functionality of their model
Prerequisites
- Some basic knowledge of, or experience in, working with large datasets
- Some experience with Power BI (not mandatory)
Resources
The files used in this Lesson can be found in the following GitHub repo: https://github.com/cloudacademy/loading-data-power-bi
Bianca is a chartered accountant and finance business partner who works with Power BI regularly to create useful, interactive dashboards to analyze financial metrics. She has worked as a lecturer and as a financial analyst in FMCG companies assisting sales and marketing teams with reviewing and understanding their financial results and forecasts, and identifying risks and opportunities for improvement. Bianca enjoys using technology to automate and simplify financial metrics.